Enzymatic Activation Of Alkanes Constraints And Prospects Uk

  • Sunney I. Chan

Read chapter Appendix A: Contributed Manuscripts: Many potential applications of synthetic and systems biology are relevant to the challenges associated w. Construction and working principle of diesel generator pdf online online. Login Register Cart Help The Science and Applications of Synthetic and Systems Biology: Workshop Summary (2011).

  • The Ultimate Ford EFI Tuning Guide for HPTuners Software. Topics covered in this HPTuners tuning guide for Ford include: Ford EFI Tuning for most Fords from.
  • Selective Activation of Alkanes by Gas-Phase Metal Ions. Of diatomic molecules via organic reaction mechanisms and studies in oxidation catalysis to gas-phase models of enzymatic processes. Among others, his current interests concern selective bond activation, multiply charged systems, and combination of different spectroscopic techniques.
  • Figure 2 shows the main principle of aerobic degradation of hydrocarbons [75]. The initial intracellular attack of organic pollutants is an oxidative process and the activation as well as incorporation of oxygen is the enzymatic key reaction catalyzed by oxygenases and peroxidases.
  • Activation of Hydrogen Peroxide by Iron-Containing Minerals and Catalysts in. Financial Constraints. Dehydrogenation of Light Alkanes over Supported Pt. Incentives in Baseball. Enzymatic Baeyer-Villiger Oxidation for Natural Product Synthesis. Prospects And Implications. How to document and maintain a Quality System.
Institute of Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
§School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
Department of Chemistry, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
#Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
Noyes Laboratory, 127-72, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
Alkanes
*Tel. : +886-2-2789-8654. Fax: +886-2-2783-1237. E-mail: [email protected].
Download Hi-Res ImageDownload to MS-PowerPointCite This:Chem. Rev.2017117138574-8621

Abstract

Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C—H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

This article is cited by 79 publications. Sample logic synergy keygen download torrent.

This edition includes all of the features of Automation as well as Web printing, SAP and Oracle integration, and centralized management and control across sites and continents. Your users can print labels directly from within Oracle, SAP, and other enterprise software without having to manually launch the BarTender solution. Bartender edition enterprise license. BarTender 2016 Enterprise Automation is SAP certified and Oracle validated. BarTender 2016 Enterprise Automation Edition with 3 Printer License by Seagull Scientific BarTender 2016 Enterprise Automation Edition includes all the features of plus add additional features for enterprise label production environments requiring the ultimate in label design, printing, control, and automation. With BarTender 2016 Enterprise Automation, you can automatically print in response to Web service API or TCP/IP communications.

Free download program imagina espanol sin barreras pdf download. Imagina 3rd Edition Pdf.pdf - Free download Ebook, Handbook, Textbook, User Guide PDF files on the internet quickly and easily. 3rd Edition Imagina Third Edition Workbook Answers Imagina Fourth Edition Answers Imagina Espanol Sin Barreras 3rd Edition Pdf Imagina 4th Edition Textbook Answers Imagina 3rd Edition. Workbook Key Imagina 4e.

Enzymatic Activation Of Alkanes Constraints And Prospects Ukulele

  1. Aditya Nandy, Jiazhou Zhu, Jon Paul Janet, Chenru Duan, Rachel B. Getman, Heather J. Kulik. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catalysis2019, Article ASAP.
  2. Jie Chen, Fanhui Kong, Nana Ma, Panxia Zhao, Chuanfei Liu, Xiling Wang, Zhiqi Cong. Peroxide-Driven Hydroxylation of Small Alkanes Catalyzed by an Artificial P450BM3 Peroxygenase System. ACS Catalysis2019,9 (8) , 7350-7355. DOI: 10.1021/acscatal.9b02507.
  3. Shuxing Bai, Yong Xu, Pengtang Wang, Qi Shao, Xiaoqing Huang. Activating and Converting CH4 to CH3OH via the CuPdO2/CuO Nanointerface. ACS Catalysis2019,9 (8) , 6938-6944. DOI: 10.1021/acscatal.9b00714.
  4. Sk Asif Ikbal, Cédric Colomban, Dawei Zhang, Magalie Delecluse, Thierry Brotin, Véronique Dufaud, Jean-Pierre Dutasta, Alexander B. Sorokin, Alexandre Martinez. Bioinspired Oxidation of Methane in the Confined Spaces of Molecular Cages. Inorganic Chemistry2019,58 (11) , 7220-7228. DOI: 10.1021/acs.inorgchem.9b00199.
  5. Manjistha Mukherjee, Abhishek Dey. Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C–H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Central Science2019,5 (4) , 671-682. DOI: 10.1021/acscentsci.9b00046.
  6. Li-Long Zhang, Xue-Mei Chen, Chun-Guang Liu. Reduction of N2O by CO via Mans–van Krevelen Mechanism over Phosphotungstic Acid Supported Single-Atom Catalysts: A Density Functional Theory Study. Inorganic Chemistry2019,58 (8) , 5221-5229. DOI: 10.1021/acs.inorgchem.9b00290.
  7. Takaaki Ikuno, Sebastian Grundner, Andreas Jentys, Guanna Li, Evgeny Pidko, John Fulton, Maricruz Sanchez-Sanchez, Johannes A. Lercher. Formation of Active Cu-oxo Clusters for Methane Oxidation in Cu-Exchanged Mordenite. The Journal of Physical Chemistry C2019,123 (14) , 8759-8769. DOI: 10.1021/acs.jpcc.8b10293.
  8. Mahmood Azizpoor Fard, Ava Behnia, Richard J. Puddephatt. Models for Cooperative Catalysis: Oxidative Addition Reactions of Dimethylplatinum(II) Complexes with Ligands Having Both NH and OH Functionality. ACS Omega2019,4 (1) , 257-268. DOI: 10.1021/acsomega.8b03089.
  9. Akira Oda, Takahiro Ohkubo, Takashi Yumura, Hisayoshi Kobayashi, Yasushige Kuroda. Room-Temperature Activation of the C–H Bond in Methane over Terminal ZnII–Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorganic Chemistry2019,58 (1) , 327-338. DOI: 10.1021/acs.inorgchem.8b02425.
  10. Jayeon Baek, Bunyarat Rungtaweevoranit, Xiaokun Pei, Myeongkee Park, Sirine C. Fakra, Yi-Sheng Liu, Roc Matheu, Sultan A. Alshmimri, Saeed Alshehri, Christopher A. Trickett, Gabor A. Somorjai, Omar M. Yaghi. Bioinspired Metal–Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Journal of the American Chemical Society2018,140 (51) , 18208-18216. DOI: 10.1021/jacs.8b11525.
  11. Gabriele Agonigi, Gianluca Ciancaleoni, Tiziana Funaioli, Stefano Zacchini, Francesco Pineider, Calogero Pinzino, Guido Pampaloni, Valerio Zanotti, Fabio Marchetti. Controlled Dissociation of Iron and Cyclopentadienyl from a Diiron Complex with a Bridging C3 Ligand Triggered by One-Electron Reduction. Inorganic Chemistry2018,57 (24) , 15172-15186. DOI: 10.1021/acs.inorgchem.8b02445.
  12. Suzanne M. Adam, Gayan B. Wijeratne, Patrick J. Rogler, Daniel E. Diaz, David A. Quist, Jeffrey J. Liu, Kenneth D. Karlin. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews2018,118 (22) , 10840-11022. DOI: 10.1021/acs.chemrev.8b00074.
  13. Gianluca Ciancaleoni, Stefano Zacchini, Valerio Zanotti, Fabio Marchetti. DFT Mechanistic Insights into the Alkyne Insertion Reaction Affording Diiron μ-Vinyliminium Complexes and New Functionalization Pathways. Organometallics2018,37 (21) , 3718-3731. DOI: 10.1021/acs.organomet.8b00448.
  14. Oksana V. Nesterova, Dmytro S. Nesterov, Julia Jezierska, Armando J. L. Pombeiro, Andrew Ozarowski. Copper(II) Complexes with Bulky N-Substituted Diethanolamines: High-Field Electron Paramagnetic Resonance, Magnetic, and Catalytic Studies in Oxidative Cyclohexane Amidation. Inorganic Chemistry2018,57 (19) , 12384-12397. DOI: 10.1021/acs.inorgchem.8b02145.
  15. Mian Guo, Yong-Min Lee, Mi Sook Seo, Yong-Ju Kwon, Xiao-Xi Li, Takehiro Ohta, Won-Suk Kim, Ritimukta Sarangi, Shunichi Fukuzumi, Wonwoo Nam. Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorganic Chemistry2018,57 (16) , 10232-10240. DOI: 10.1021/acs.inorgchem.8b01426.
  16. Büsra Dereli, Mohammad R. Momeni, Christopher J. Cramer. Density Functional Modeling of Ligand Effects on Electronic Structure and C–H Bond Activation Activity of Copper(III) Hydroxide Compounds. Inorganic Chemistry2018,57 (16) , 9807-9813. DOI: 10.1021/acs.inorgchem.8b01530.
  17. Ka-Pan Shing, Bei Cao, Yungen Liu, Hung Kay Lee, Ming-De Li, David Lee Phillips, Xiao-Yong Chang, Chi-Ming Che. Arylruthenium(III) Porphyrin-Catalyzed C–H Oxidation and Epoxidation at Room Temperature and [RuV(Por)(O)(Ph)] Intermediate by Spectroscopic Analysis and Density Functional Theory Calculations. Journal of the American Chemical Society2018,140 (22) , 7032-7042. DOI: 10.1021/jacs.8b04470.
  18. Yujie Liang, Jialiang Wei, Xu Qiu, Ning Jiao. Homogeneous Oxygenase Catalysis. Chemical Reviews2018,118 (10) , 4912-4945. DOI: 10.1021/acs.chemrev.7b00193.
  19. Marco Bugnola, Raanan Carmieli, Ronny Neumann. Aerobic Electrochemical Oxygenation of Light Hydrocarbons Catalyzed by an Iron–Tungsten Oxide Molecular Capsule. ACS Catalysis2018,8 (4) , 3232-3236. DOI: 10.1021/acscatal.8b00477.
  20. Chih-Cheng Liu, Damodar Janmanchi, Da-Ren Wen, Jung-Nan Oung, Chung-Yuan Mou, Steve S.-F. Yu, Sunney I. Chan. Catalytic Oxidation of Light Alkanes Mediated at Room Temperature by a Tricopper Cluster Complex Immobilized in Mesoporous Silica Nanoparticles. ACS Sustainable Chemistry & Engineering2018,6 (4) , 5431-5440. DOI: 10.1021/acssuschemeng.8b00270.
  21. Yan Fang Liu, , Likai Du. Theoretical Study of the Oxidation of Methane to Methanol by the [CuIICuII(μ-O)2CuIII(7-N-Etppz)]1+ Complex. Inorganic Chemistry2018,57 (6) , 3261-3271. DOI: 10.1021/acs.inorgchem.8b00054.
  22. Bin Qiu, Daqian Xu, Qiangsheng Sun, Chengxia Miao, Yong-Min Lee, Xiao-Xi Li, Wonwoo Nam, and Wei Sun . Highly Enantioselective Oxidation of Spirocyclic Hydrocarbons by Bioinspired Manganese Catalysts and Hydrogen Peroxide. ACS Catalysis2018,8 (3) , 2479-2487. DOI: 10.1021/acscatal.7b03601.
  23. M. Haris Mahyuddin, Takahiro Tanaka, Yoshihito Shiota, Aleksandar Staykov, and Kazunari Yoshizawa . Methane Partial Oxidation over [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+ Active Species in Large-Pore Zeolites. ACS Catalysis2018,8 (2) , 1500-1509. DOI: 10.1021/acscatal.7b03389.
  24. Terry Z. H. Gani and Heather J. Kulik . Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by FeIV═O. ACS Catalysis2018,8 (2) , 975-986. DOI: 10.1021/acscatal.7b03597.
  25. Ghazanfar Ali, Peter E. VanNatta, David A. Ramirez, Kenneth M. Light, and Matthew T. Kieber-Emmons . Thermodynamics of a μ-oxo Dicopper(II) Complex for Hydrogen Atom Abstraction. Journal of the American Chemical Society2017,139 (51) , 18448-18451. DOI: 10.1021/jacs.7b10833.
  26. Johannes E. M. N. Klein, Debasish Mandal, Wei-Min Ching, Dibyendu Mallick, Lawrence Que, Jr., and Sason Shaik . Privileged Role of Thiolate as the Axial Ligand in Hydrogen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping the Potential Energy Surface and Inducing Significant H-Atom Tunneling. Journal of the American Chemical Society2017,139 (51) , 18705-18713. DOI: 10.1021/jacs.7b11300.
  27. Terry Z. H. Gani and Heather J. Kulik . Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics. Journal of Chemical Theory and Computation2017,13 (11) , 5443-5457. DOI: 10.1021/acs.jctc.7b00848.
  28. Chun-Guang Liu, Meng-Xu Jiang, and Zhong-Min Su . Computational Study on M1/POM Single-Atom Catalysts (M = Cu, Zn, Ag, and Au; POM = [PW12O40]3–): Metal–Support Interactions and Catalytic Cycle for Alkene Epoxidation. Inorganic Chemistry2017,56 (17) , 10496-10504. DOI: 10.1021/acs.inorgchem.7b01480.
  29. Robert H. Crabtree , Aiwen Lei . Introduction: CH Activation. Chemical Reviews2017,117 (13) , 8481-8482. DOI: 10.1021/acs.chemrev.7b00307.
  30. Yuanyi Zhou, Ling Zhang, Wenzhong Wang. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nature Communications2019,10 (1) DOI: 10.1038/s41467-019-08454-0.
  31. Carole Guggenheim, Andreas Brand, Helmut Bürgmann, Laura Sigg, Bernhard Wehrli. Aerobic methane oxidation under copper scarcity in a stratified lake. Scientific Reports2019,9 (1) DOI: 10.1038/s41598-019-40642-2.
  32. Yu-Jhang Lu, Mu-Cheng Hung, Brian T.-A. Chang, Tsu-Lin Lee, Zhi-Han Lin, I-Kuen Tsai, Yao-Sheng Chen, Chin-Shuo Chang, Yi-Fang Tsai, Kelvin H.-C. Chen, Sunney I. Chan, Steve S.-F. Yu. The PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The CuI sponge and its function. Journal of Inorganic Biochemistry2019,196, 110691. DOI: 10.1016/j.jinorgbio.2019.04.005.
  33. Kaiji Shen, Yael Diskin-Posner, Linda J. W. Shimon, Gregory Leitus, Raanan Carmieli, Ronny Neumann. Aerobic oxygenation catalyzed by first row transition metal complexes coordinated by tetradentate mono-carbon bridged bis-phenanthroline ligands: intra- versus intermolecular carbon–hydrogen bond activation. Dalton Transactions2019,48 (19) , 6396-6407. DOI: 10.1039/C9DT00828D.
  34. Matthew O. Ross, Fraser MacMillan, Jingzhou Wang, Alex Nisthal, Thomas J. Lawton, Barry D. Olafson, Stephen L. Mayo, Amy C. Rosenzweig, Brian M. Hoffman. Particulate methane monooxygenase contains only mononuclear copper centers. Science2019,364 (6440) , 566-570. DOI: 10.1126/science.aav2572.
  35. Touraj Karimpour, Elham Safaei, Babak Karimi. A supported manganese complex with amine-bis(phenol) ligand for catalytic benzylic C(sp 3 )–H bond oxidation. RSC Advances2019,9 (25) , 14343-14351. DOI: 10.1039/C9RA02284H.
  36. Elodie Anxolabéhère-Mallart, Frédéric Banse. Bioinspired molecular catalysts for homogenous electrochemical activation of dioxygen. Current Opinion in Electrochemistry2019, DOI: 10.1016/j.coelec.2019.05.002.
  37. Sarah C. Bete, Christian Würtele, Matthias Otte. A bio-inspired imidazole-functionalised copper cage complex. Chemical Communications2019,55 (30) , 4427-4430. DOI: 10.1039/C9CC00437H.
  38. Akimitsu Miyaji, Muneyuki Nitta, Toshihide Baba. Influence of copper ions removal from membrane-bound form of particulate methane monooxygenase from Methylosinus trichosporium OB3b on its activity for methane hydroxylation. Journal of Biotechnology: X2019,1, 100001. DOI: 10.1016/j.btecx.2018.100001.
  39. Kwanghee Cho, Hyeongyeon Kim, Lê Minh Nhựt, Kyeongjun Seo, Myung-Gil Kim, Choongik Kim. Effect of acidity of oxide support on the activity and stability of μ-nitrido diiron phthalocyanine complex. Chemical Engineering Research and Design2019,144, 429-433. DOI: 10.1016/j.cherd.2019.02.023.
  40. Hyun Jin Kim, June Huh, Young Wan Kwon, Donghyun Park, Yeonhwa Yu, Young Eun Jang, Bo-Ram Lee, Eunji Jo, Eun Jung Lee, Yunseok Heo, Weontae Lee, Jeewon Lee. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nature Catalysis2019,2 (4) , 342-353. DOI: 10.1038/s41929-019-0255-1.
  41. Sunney I. Chan, Steve S.-F Yu. Copper protein constructs for methane oxidation. Nature Catalysis2019,2 (4) , 286-287. DOI: 10.1038/s41929-019-0268-9.
  42. Anup Pandith, Kashi Raj Bhattarai, Ravi Kumara Guralamatta Siddappa, Han-Jung Chae, Young Jun Seo. Novel fluorescent C2-symmetric sequential on-off-on switch for Cu2+ and pyrophosphate and its application in monitoring of endogenous alkaline phosphatase activity. Sensors and Actuators B: Chemical2019,282, 730-742. DOI: 10.1016/j.snb.2018.11.111.
  43. Oksana Nesterova, Katerina Kasyanova, Elena Buvaylo, Olga Vassilyeva, Brian Skelton, Dmytro Nesterov, Armando Pombeiro. Heterometallic CoIIIZnII Schiff Base Catalyst for Mild Hydroxylation of C(sp3)–H Bonds of Unactivated Alkanes: Evidence for Dual Mechanism Controlled by the Promoter. Catalysts2019,9 (3) , 209. DOI: 10.3390/catal9030209.
  44. Wondemagegn Hailemichael Wanna, Ravirala Ramu, Damodar Janmanchi, Yi-Fang Tsai, Natarajan Thiyagarajan, Steve S.-F. Yu. An efficient and recyclable copper nano-catalyst for the selective oxidation of benzene to p-benzoquinone (p-BQ) using H2O2(aq) in CH3CN. Journal of Catalysis2019,370, 332-346. DOI: 10.1016/j.jcat.2019.01.005.
  45. Christopher Dennison. The Coordination Chemistry of Copper Uptake and Storage for Methane Oxidation. Chemistry – A European Journal2019,25 (1) , 74-86. DOI: 10.1002/chem.201803444.
  46. Marina G. Kalyuzhnaya, Oscar A. Gomez, J. Colin Murrell. The Methane-Oxidizing Bacteria (Methanotrophs). 2019,, 1-34. DOI: 10.1007/978-3-319-60053-6_10-1.
  47. Sarah E. N. Brazeau, Emily E. Norwine, Steven F. Hannigan, Nicole Orth, Ivana Ivanović-Burmazović, Dieter Rukser, Florian Biebl, Benjamin Grimm-Lebsanft, Gregor Praedel, Melissa Teubner, Michael Rübhausen, Patricia Liebhäuser, Thomas Rösener, Julia Stanek, Alexander Hoffmann, Sonja Herres-Pawlis, Linda H. Doerrer. Dual oxidase/oxygenase reactivity and resonance Raman spectra of {Cu 3 O 2 } moiety with perfluoro- t -butoxide ligands. Dalton Transactions2019,117 DOI: 10.1039/C9DT00516A.
  48. Alexander B. Sorokin. Recent Developments of Bioinspired Approaches to Functionalization of Light Alkanes. 2018,, 189-210. DOI: 10.1002/9781119379256.ch10.
  49. Dmytro S. Nesterov, Luís M. T. Frija, Armando J. L. Pombeiro, Maximilian N. Kopylovich. Catalytic Alkane Amidation and Related Reactions. 2018,, 427-448. DOI: 10.1002/9781119379256.ch19.
  50. Maricruz Sanchez-Sanchez, Johannes A. Lercher. Oxidative Functionalization of Methane on Heterogeneous Catalysts. 2018,, 141-157. DOI: 10.1002/9781119379256.ch8.
  51. Craig D. Osborne, Victoria S. Haritos. Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria. Molecular Phylogenetics and Evolution2018,129, 171-181. DOI: 10.1016/j.ympev.2018.08.010.
  52. Yeo Park, Hee Yoo, Min Song, Dong-Heon Lee, Seung Lee. Biocatalytic Oxidations of Substrates through Soluble Methane Monooxygenase from Methylosinus sporium 5. Catalysts2018,8 (12) , 582. DOI: 10.3390/catal8120582.
  53. Elena Salvadeo, Lionel Dubois, Jean-Marc Latour. Trinuclear copper complexes as biological mimics: Ligand designs and reactivities. Coordination Chemistry Reviews2018,374, 345-375. DOI: 10.1016/j.ccr.2018.07.005.
  54. Dmytro S. Nesterov, Oksana V. Nesterova, Maximilian N. Kopylovich, Armando J.L. Pombeiro. Pronounced retention of stereoconfiguration upon sp3 C H bonds hydroxylation of dimethylcyclohexanes and decahydronaphthalenes with m-CPBA oxidant and a Co-phthalocyanine catalyst. Molecular Catalysis2018,459, 8-15. DOI: 10.1016/j.mcat.2018.08.009.
  55. Hidehiro Ito, Ryuichi Kondo, Kosei Yoshimori, Toshiaki Kamachi. Methane Hydroxylation with Water as an Electron Donor under Light Irradiation in the Presence of Reconstituted Membranes Containing both Photosystem II and a Methane Monooxygenase. ChemBioChem2018,19 (20) , 2152-2155. DOI: 10.1002/cbic.201800324.
  56. Zhenzhuo Lan, Shaama Mallikarjun Sharada. Computational strategies to probe CH activation in dioxo-dicopper complexes. Physical Chemistry Chemical Physics2018,20 (40) , 25602-25614. DOI: 10.1039/C8CP05096A.
  57. Shaodong Zhou, Xiaoyan Sun, Lei Yue, Maria Schlangen, Helmut Schwarz. Selective C−O Coupling Hidden in the Thermal Reaction of [Al 2 CuO 5 ] + with Methane. Chemistry - A European Journal2018,24 (55) , 14649-14653. DOI: 10.1002/chem.201804059.
  58. Chun–Guang Liu, Yun–Jie Chu. Activation mechanism of hydrogen peroxide by a divanadium–substituted polyoxometalate [γ–PV2W10O38(μ–OH)2]3–: A computational study. Journal of Molecular Graphics and Modelling2018,85, 56-67. DOI: 10.1016/j.jmgm.2018.07.009.
  59. Fabio Marchetti. Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. European Journal of Inorganic Chemistry2018,2018 (36) , 3987-4003. DOI: 10.1002/ejic.201800659.
  60. Linda H. Doerrer. Cu in biology: Unleashed by O2 and now irreplaceable. Inorganica Chimica Acta2018,481, 4-24. DOI: 10.1016/j.ica.2017.11.051.
  61. Luisa Ciano, Gideon J. Davies, William B. Tolman, Paul H. Walton. Bracing copper for the catalytic oxidation of C–H bonds. Nature Catalysis2018,1 (8) , 571-577. DOI: 10.1038/s41929-018-0110-9.
  62. Soo Y. Ro, Matthew O. Ross, Yue Wen Deng, Sharon Batelu, Thomas J. Lawton, Joseph D. Hurley, Timothy L. Stemmler, Brian M. Hoffman, Amy C. Rosenzweig. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity. Journal of Biological Chemistry2018,293 (27) , 10457-10465. DOI: 10.1074/jbc.RA118.003348.
  63. Hyunchang Park, Hye Mi Ahn, Ha Young Jeong, Cheal Kim, Dongwhan Lee. Non-Heme Iron Catalysts for Olefin Epoxidation: Conformationally Rigid Aryl-Aryl Junction To Support Amine/Imine Multidentate Ligands. Chemistry - A European Journal2018,24 (34) , 8632-8638. DOI: 10.1002/chem.201800447.
  64. Oksana V. Nesterova, Katerina V. Kasyanova, Valeriya G. Makhankova, Vladimir N. Kokozay, Olga Yu. Vassilyeva, Brian W. Skelton, Dmytro S. Nesterov, Armando J.L. Pombeiro. Stereospecific sp3 C–H oxidation with m-CPBA: A CoIII Schiff base complex as pre-catalyst vs. its CoIIICdII heterometallic derivative. Applied Catalysis A: General2018,560, 171-184. DOI: 10.1016/j.apcata.2018.05.004.
  65. Chen-Hao Yeh, Steve S.-F. Yu, Sunney I. Chan, Jyh-Chiang Jiang. Quantum Chemical Studies of Methane Oxidation to Methanol on a Biomimetic Tricopper Complex: Mechanistic Insights. ChemistrySelect2018,3 (18) , 5113-5122. DOI: 10.1002/slct.201800550.
  66. Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem2018,10 (8) , 1686-1702. DOI: 10.1002/cctc.201701786.
  67. Yuxin Li, Bin Qin, Xiaoqin Li, Jun Tang, Yu Chen, Lina Zhou, Song You. Selective Oxidations of Cyperenoic Acid by Slightly Reshaping the Binding Pocket of Cytochrome P450 BM3. ChemCatChem2018,10 (3) , 559-565. DOI: 10.1002/cctc.201701088.
  68. Paolo Pirovano, Aidan R. McDonald. Synthetic High-Valent M-O-X Oxidants. European Journal of Inorganic Chemistry2018,2018 (5) , 547-560. DOI: 10.1002/ejic.201701072.
  69. Lara Sellés Vidal, Ciarán L. Kelly, Paweł M. Mordaka, John T. Heap. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics2018,1866 (2) , 327-347. DOI: 10.1016/j.bbapap.2017.11.005.
  70. Jeremy D. Semrau, Alan A. DiSpirito, Wenyu Gu, Sukhwan Yoon, . Metals and Methanotrophy. Applied and Environmental Microbiology2018,84 (6) DOI: 10.1128/AEM.02289-17.
  71. Lili Cao, Octav Caldararu, Amy C. Rosenzweig, Ulf Ryde. Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase. Angewandte Chemie2018,130 (1) , 168-172. DOI: 10.1002/ange.201708977.
  72. Lili Cao, Octav Caldararu, Amy C. Rosenzweig, Ulf Ryde. Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase. Angewandte Chemie International Edition2018,57 (1) , 162-166. DOI: 10.1002/anie.201708977.
  73. Dmytro S. Nesterov, Oksana V. Nesterova, Armando J.L. Pombeiro. Homo- and heterometallic polynuclear transition metal catalysts for alkane C H bonds oxidative functionalization: Recent advances. Coordination Chemistry Reviews2018,355, 199-222. DOI: 10.1016/j.ccr.2017.08.009.
  74. Shunichi Fukuzumi, Yong-Min Lee, Jieun Jung, Wonwoo Nam. Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chemistry2018,20 (5) , 948-963. DOI: 10.1039/C7GC03387G.
  75. Ming Ma, Bing Jun Jin, Ping Li, Myung Sun Jung, Jin Il Kim, Yoonjun Cho, Sungsoon Kim, Jun Hyuk Moon, Jong Hyeok Park. Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science2017,4 (12) , 1700379. DOI: 10.1002/advs.201700379.
  76. Amélie Kochem, Jennifer K. Molloy, Gisèle Gellon, Nicolas Leconte, Christian Philouze, Florian Berthiol, Olivier Jarjayes, Fabrice Thomas. A Structurally Characterized Cu III Complex Supported by a Bis(anilido) Ligand and Its Oxidative Catalytic Activity. Chemistry - A European Journal2017,23 (56) , 13929-13940. DOI: 10.1002/chem.201702010.
  77. Masahito Ishikawa, Yuya Tanaka, Risa Suzuki, Kota Kimura, Kenya Tanaka, Kazuhide Kamiya, Hidehiro Ito, Souichiro Kato, Toshiaki Kamachi, Katsutoshi Hori, Shuji Nakanishi. Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresource Technology2017,241, 1157-1161. DOI: 10.1016/j.biortech.2017.05.107.
  78. Eli M. Espinoza, Jillian M. Larsen-Clinton, Maciej Krzeszewski, Narek Darabedian, Daniel T. Gryko, Valentine I. Vullev. Bioinspired approach toward molecular electrets: synthetic proteome for materials. Pure and Applied Chemistry, Article ASAP.
  79. Bin Yang, Jian-Fang Cui, Man Kin Wong. Selective C–H bond hydroxylation of cyclohexanes in water by supramolecular control. RSC Advances2017,7 (49) , 30886-30893. DOI: 10.1039/C7RA03930A.

Enzymatic Activation Of Alkanes Constraints And Prospects Uk 2016

  • Abels, C.; Carstensen, F.; Wessling, M.
  • Methane partial oxidation by unsupported and silica supported iron phosphate catalysts—influence of reaction conditions and co-feeding of water on activity and selectivity
    Alptekin, G.O.; Herring, A.M.; Williamson, D.L.; Ohno, T.R.; McCormick, R.L.
  • Anthony, C.
  • Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica-alumina
  • Cofactor-independent oxygenation reactions catalyzed by soluble methane monooxygenase at the surface of a modified gold electrode
    Astier, Y.; Balendra, S.; Hill, H.A.O.; Smith, T.J.; Dalton, H.
  • Enzymatic activation of alkanes: constraints and prospective
  • Mild, aqueous, aerobic, catalytic oxidation of methane to methanol and acetaldehyde catalyzed by a supported bipyrimidinylplatinum-polyoxometalate hybrid compound
  • Elucidating membrane surface properties for preventing fouling of bioreactor membranes by surfactin
    Behary, N.; Lecouturier, D.; Perwuelz, A.; Dhulster, P.
  • Direct oxidation of methane to oxygenates over heteropolyanions
    Benlounes, O.; Mansouri, S.; Rabia, C.; Hocine, S.
  • Structure and catalytic properties of VOx/MCM materials for the partial oxidation of methane to formaldehyde
    Berndt, H.; Martin, A.; Bruckner, A.; Schreier, E.; Muller, D.; Kosslick, H.; Wolf, G.U.; Lucke, B.
  • Production of primary aliphatic-alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme-system
    Bosetti, A.; van Beilen, J.B.; Preusting, H.; Lageveen, R.G.; Witholt, B.
  • The methanotrophs − the families methylococcaceae and methylocystaceeae
  • Bacterial dry matter content and biomass estimations
  • Methane as raw material in synthetic chemistry: the final frontier
  • Utilizing terminal oxidants to achieve P450-Catalyzed oxidation of methane
  • Directed Evolution of Cytochrome P450 for Small Alkane Hydroxylation. Thesis
  • Oxygen transfer in hydrocarbon-aqueous dispersions and its applicability to alkane bioprocesses: a review
  • Envisioning the bioconversion of methane to liquid fuels
  • Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly ‘ Pseudomonas butanovora ’
    Cooley, R.B.; Dubbel, B.L.; Sayavedra-Soto, L.A.; Bottomley, P.J.; Arp, D.J.
  • Green oxidation of fatty alcohols: challenges and opportunities
    Cortes Corberan, V.; Gonzalez-Perez, M.E.; Martinez-Gonzalez, S.; Gomez-Aviles, A.
  • High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b
  • Butane monooxygenase of ‘ Pseudomonas butanovora ': purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase
  • Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath)
    Elliott, S.J.; Zhu, M.; Tso, L.; Nguyen, H.H.T.; Yip, J.H.K.; Chan, S.I.
  • Enzymatic synthesis of butyl acetate in a packed bed reactor underliquid and supercritical conditions
    Escandell, J.; Wurm, D.J.; Belleville, M.-P.; Sanchez, J.; Harasek, M.; Paolucci-Jeanjean, D.
  • Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties
  • Direct catalytic-oxidation of methane to methanol—a review
  • Production of α,(-Alkanediols using Escherichia coli expressing a cytochrome p450 from Acinetobacter sp. OC4
    Fujii, T.; Narikawa, T.; Sumisa, F.; Arisawa, A.; Takeda, K.; Kato, J.
  • Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents
    Gargouri, B.; Karray, F.; Mhiri, N.; Aloui, F.; Sayadi, S.
  • Biological conversion of methane to liquid fuels: status and opportunities
  • Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase
  • Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity
  • Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P-putida GPo1 expressed in E-coil
  • Substrate-specificity of soluble methane monooxygenase − mechanistic implications
  • Selective oxidation of methane by the bis(mu-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites
    Groothaert, M.H.; Smeets, P.J.; Sels, B.F.; Jacobs, P.A.; Schoonheydt, R.A.
  • Engineered catalytic biofilms for continuous large scale production of n-octanol and ( S )-styrene oxide
  • Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
    Grundner, S.; Markovits, M.A.C.; Li, G.; Tromp, M.; Pidko, E.A.; Hensen, E.J.M.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J.A.
  • Hanson, R.S.; Hanson, T.E.
  • Methane partial oxidation to methanol over Ga2O3 based catalysts: use of the CH4 /D2 exchange reaction as a design tool
    Hargreaves, J.S.J.; Hutchings, G.J.; Joyner, R.W.; Taylor, S.H.
  • Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis
  • Separation of methanol from methanol/water mixtures with pervaporation hybrid membranes
  • A review of separation technologies in current and future biorefineries
    Huang, H.J.; Ramaswamy, S.; Tschirner, U.W.; Ramarao, B.V.
  • Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems
  • Biocatalytic conversion of methane to methanol as a key step for development of methane-Based biorefineries
    Hwang, I.Y.; Lee, S.H.; Choi, Y.S.; Park, S.J.; Na, J.G.; Chang, I.S.; Kim, C.; Kim, H.C.; Kim, Y.H.; Lee, J.W.; Lee, E.Y.
  • Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum
    Islam, T.; Jensen, S.; Reigstad, L.J.; Larsen, O.; Birkeland, N.K.
  • Methane hydroxylation using light energy by the combination of thylakoid and methane monooxygenase
    Ito, H.; Mori, F.; Tabata, K.; Okura, I.; Kamachi, T.
  • Activation of the hydroxylase of sMMO from Methylococcus-capsulatus (Bath) by hydrogen-peroxide
  • Selective oxidation of methane to methanol catalyzed, with CH activation, by homogeneous, cationic gold
    Jones, C.J.; Taube, D.; Ziatdinov, V.R.; Periana, R.A.; Nielsen, R.J.; Oxgaard, J.; Goddard, W.A.
  • Enzyme Catalysis in an Aqueous/Organic Segment Flow Microreactor: Ways to Stabilize Enzyme Activity
  • Use of perfluorocarboxylic acids to trick cytochrome p450bm3 into initiating the hydroxylation of gaseous alkanes
  • Direct hydroxylation of primary carbons in small alkanes by wild-type cytochrome P450 BM3 containing perfluorocarboxylic acids as decoy molecules
  • Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature
  • Kim, J.; Grate, J.W.; Wang, P.
  • Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode
  • Optimization of lab scale methanol production by Methylosinus trichosporium OB3b
  • Partial oxidation of methane over silica catalysts promoted by 3D transition-metal ions
    Kobayashi, T.; Nakagawa, K.; Tabata, K.; Haruta, M.
  • In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6
    Koch, D.J.; Chen, M.M.; van Beilen, J.B.; Arnold, F.H.
  • Pervaporative removal of organics from water using hydrophobic membranes Binary mixtures
  • Novel dual extraction process for acetone-butanol-ethanol fermentation
  • Petroleum-contaminated water treatment in a fluidized-bed bioreactor with immobilized Rhodococcus cells
    Kuyukina, M.S.; Ivshina, I.B.; Serebrennikova, M.K.; Krivorutchko, A.B.; Podorozhko, E.A.; Ivanov, R.V.; Lozinsky, V.I.
  • Catalytic oxygenation of organic substrates: toward greener ways for incorporating oxygen
  • H 2 -driven cofactor regeneration with NAD(P)+-reducing hydrogenases
  • Efficient and selective formation of methanol from methane in a fuel cell-type reactor
  • Coenzyme analogs: excellent substitutes (not poor imitations) for electrochemical regeneration
  • Selective oxidation of methane and its homologues to alcohols catalyzed by gold compounds and a proposed reaction mechanism
    Levchenko, L.A.; Lobanova, N.G.; Martynenko, V.M.; Sadkov, A.P.; Shestakov, A.F.; Shilova, A.K.; Shilov, A.E.
  • Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase
  • Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps diesel and crude oil in batch and fed-batch bioreactors
  • Towards continuous sustainable processes for enzymatic synthesis of biodiesel in hydrophobic ionic liquids/supercritical carbon dioxide biphasic systems
  • Halogenated metalloporphorin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen
  • Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation
  • Microbial communities involved in anaerobic degradation of alkanes
    Mbadinga, S.M.; Wang, L.Y.; Zhou, L.; Liu, J.F.; Gu, J.D.; Mu, B.Z.
  • Methanol biosynthesis by covalently immobilized cells of Methylosinus trichosporium : batch and continuous studies
  • Direct conversion of ethane to ethanol by engineered cytochrome P450BM3
    Meinhold, P.; Peters, M.W.; Chen, M.M.Y.; Takahashi, K.; Arnold, F.H.
  • Hydrogen peroxide as an effecter on the inactivation of particulate methane monooxygenase under aerobic conditions
    Miyaji, A.; Suzuki, M.; Baba, T.; Kamachi, T.; Okura, I.
  • The P450 Superfamily: Updated Listing of All Genes and Recommended Nomenclature for the chromosomal Loci
    Nebert, D.W.; Nelson, D.R.; Adesnik, M.; Coon, M.J.; Estabrook, R.W.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; Kemper, B.; Levin, W.; Phillips, I.R.; Sato, R.; Waterman, M.R.
  • The P450 superfamily: update on new sequences, gene-mapping, and recommended nomenclature
    Nebert, D.W.; Nelson, D.R.; Coon, M.J.; Estabrook, R.W.; Feyereisen, R.; Fujiikuriyama, Y.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; Loper, J.C.; Sato, R.; Waterman, M.R.; Waxman, D.J.
  • The P450 Superfamily: update on new sequences, gene-mapping, accession numbers, early trivial names of enzymes, and nomenclature
    Nelson, D.R.; Kamataki, T.; Waxman, D.J.; Guengerich, F.P.; Estabrook, R.W.; Feyereisen, R.; Gonzalez, F.J.; Coon, M.J.; Gunsalus, I.C.; Gotoh, O.; Okuda, K.; Nebert, D.W.
  • P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature
    Nelson, D.R.; Koymans, L.; Kamataki, T.; Stegeman, J.J.; Feyereisen, R.; Waxman, D.J.; Waterman, M.R.; Gotoh, O.; Coon, M.J.; Estabrook, R.W.; Gunsalus, I.C.; Nebert, D.W.
  • Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium
    Nievas, M.L.; Commendatore, M.G.; Esteves, J.L.; Bucala, V.
  • Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp NCIMB 9784
  • Regio- and stereoselective subterminal hydroxylations of n-Decane by fungi in a liquid-Liquid interface bioreactor (L–L IBR)
  • Enhancement of biodegradation of oil adsorbed on fine soils in a bioslurry reactor
    Okuda, T.; Alcantara-Garduno, M.E.; Suzuki, M.; Matsui, C.; Kose, T.; Nishijima, W.; Okada, M.
  • Park, D.H.; Lee, J.
  • Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. Strain CRL-26
  • Butane oxidation process development in a circulating fluidized bed
  • A mercury-catalyzed, high-yield system for the oxidation of methane to methanol
    Periana, R.A.; Taube, D.J.; Evitt, E.R.; Loffler, D.G.; Wentrcek, P.R.; Voss, G.; Masuda, T.
  • Evolving P450pyr hydroxylase for highly enantioselective hydroxylation at non-activated carbon atom
    Pham, S.Q.; Pompidor, G.; Liu, J.; Li, X.D.; Li, Z.
  • Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling
  • Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing
  • Analysis of methane biodegradation by Methylosinus trichosporium OB3b
  • Selective catalytic oxidation of CH bonds with molecular oxygen
    Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V.B.; Pleiss, J.; Glaser, R.; Einicke, W.D.; Sprenger, G.A.; Beifuß, U.; Klemm, E.; Liebner, C.; Hieronymus, H.; Hsu, S.F.; Plietker, B.; Laschat, S.
  • Synthesis, molecular structure, and catalytic potential of the tetrairon complex Fe 4 (N 3 O 2 -L)( 4 )(μ-O)( 2 ) ( 4+ ) (L=1-carboxymethyl-4,7-dimethyl-1,4,7-triazacyclononane)
    Romakh, V.B.; Therrien, B.; Suss-Fink, G.; Shul'pin, G.B.
  • P450cam biocatalysis in surfactant-stabilized two-phase emulsions
  • Regioselective -hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp strain JS666
    Scheps, D.; Malca, S.H.; Hoffmann, H.; Nestl, B.M.; Hauer, B.
  • Whole-cell biocatalysis for selective and productive CO functional group introduction and modification
    Schrewe, M.; Julsing, M.K.; Buhler, B.; Schmid, A.
  • Semrau, J.D.; Dispirito, A.A.; Yoon, S.
  • Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme
    Shanklin, J.; Achim, C.; Schmidt, H.; Fox, B.G.; Munck, E.
  • Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments
    Sharp, C.E.; Smirnova, A.V.; Graham, J.M.; Stott, M.B.; Khadka, R.; Moore, T.R.; Grasby, S.E.; Strack, M.; Dunfield, P.F.
  • Anaerobic oxidation of methane and its homologues in the presence of gold compounds
    Shestakov, A.F.; Shilova, A.K.; Sadkov, A.P.; Lariontseva, N.V.; Golovanova, S.A.; Levchenko, L.A.; Shilov, A.E.
  • Direct conversion of methane to methanol and formaldehyde over a double-layered catalyst bed in the presence of steam
    Shi, C.L.; Sun, Q.; Hu, H.C.; Herman, R.G.; Klier, K.; Wachs, I.E.
  • Recent progress in oxidation of n-alkanes by heterogeneous catalysis
    Sivaramakrishna, A.; Suman, P.; Goud, E.V.; Janardan, S.; Sravani, C.; Yadav, C.S.; Clayton, H.S.
  • Smith, T.J.; Murrell, J.C.
  • Oxidation of methane and ethylene in water at ambient conditions
    Sorokin, A.B.; Kudrik, E.V.; Alvarez, L.X.; Afanasiev, P.; Millet, J.M.M.; Bouchu, D.
  • Electrochemical reduction of CO 2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
    Soussan, L.; Riess, J.; Erable, B.; Delia, M.L.; Bergel, A.
  • Biocatalytic hydroxylation of n-butane with in situ cofactor regeneration at low temperature and under normal pressure
    Staudt, S.; Mueller, C.A.; Marienhagen, J.; Boeing, C.; Buchholz, S.; Schwaneberg, U.; Groeger, H.
  • Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation
  • CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes
    Syed, K.; Porollo, A.; Lam, Y.W.; Grimmett, P.E.; Yadav, J.S.
  • Hydrogen and methanol formation utilizing bioprocesses
  • The partial oxidation of methane to methanol: an approach to catalyst design
    Taylor, S.H.; Hargreaves, J.S.J.; Hutchings, G.J.; Joyner, R.W.; Lembacher, C.W.
  • Dioxygen activation in soluble methane monooxygenase
  • First structural-functional model of methane monooxygenase
    Trukhan, V.M.; Polukhov, V.V.; Sulimenkov, I.V.; Ovanesyan, N.S.; Koval'chuk, N.A.; Dodonov, A.F.; Shteinman, A.A.
  • Cofactor regeneration—an important aspect of biocatalysis
  • Production of 1-Octanol from n-Octane by Pseudomonas putida KT2440
    Vallon, T.; Glemser, M.; Malca, S.H.; Scheps, D.; Schmid, J.; Siemann-Herzberg, M.; Hauer, B.; Takors, R.
  • Effect of membrane and process characteristics on cost and energy usage for separating alcohol-water mixtures using a hybrid vapor stripping-vapor permeation process
  • A review of pervaporation for product recovery from biomass fermentation processes
  • Partial oxidation of methane to methanol − Comparison of heterogeneous catalyst and homogeneous gas-phase reactions
  • Partial oxidation of methane on Mo/Sn/P silica supported catalysts
  • Enrichment, Isolation and some properties of methane-utilizing bacteria
  • Production of methanol from methane by methanotrophic bacteria
    Xin, J.Y.; Cui, J.R.; Niu, J.Z.; Hua, S.F.; Xia, C.G.; Li, S.B.; Zhu, L.M.
  • Engineering of P450pyr hydroxylase for the highly regio- and enantioselective subterminal hydroxylation of alkanes
  • First steps towards a Zn/Co(III) sep-driven P450 BM3 reactor
  • Expanding the alkane oxygenase toolbox: new enzymes and applications
  • Alkane hydroxylases involved in microbial alkane degradation
  • Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1
  • Zilly, F.E.; Acevedo, J.P.; Augustyniak, W.; Deege, A.; Haeusig, U.W.; Reetz, M.T.

Comments are closed.